ESSENTIAL OIL COMPOSITION OF Santolina etrusca FROM ITALY

B. Tirillini,¹ A. Ricci,¹ G. Pintore², M. Chessa², L. Menghini,³ and R. Pagiotti⁴

The essential oil composition of aerial parts of Santolina etrusca Marchi & D'Amato from Italy was analyzed by GC and GC/MS. Twenty-nine compounds of oil were identified representing 97.1% of the oil. The most abundant compounds were viridiflorol (17.9%), terpinen-4-ol (14.4%), myrcene (11.8%), β-pinene (9.9%), and cis-muurola-4(14),5-diene (9.9%). To the best of our knowledge, this is the first report on the GC/MS determination of the essential oil composition of S. etrusca.

Key words: *Santolina etrusca* (Lacaita), *Asteraceae*, essential oil composition, GC and GC-MS, viridiflorol, terpinen-4-ol.

Santolina etrusca (Lacaita) Marchi & D'Amato. is an endemic herb belonging to the Asteraceae family. The distribution area is limited to Northern Latium, Tuscany, and Umbria [1]. Studies on the folk traditions of plants report that the flavoring aerial part placed in wardrobes and cupboards ward off parasites; the plant, placed in large wooden cases where linen was stored or in dog and cat litters, kept away fleas and other parasites [2]. Methanol and aqueous extracts of *S. etrusca* had an antimycotic activity against *Saprolegnia ferax* [3]. A few studies report about the composition of the essential oil in the genus *Santolina*, but none is referring to *S. etrusca* species. The aim of this paper was to determine the composition of the essential oil of wild-growing plants.

Table 1 shows the composition of the essential oil obtained from the aerial parts of *S. etrusca*. Compounds are listed in order of their elution from a HP-5 column. Twenty-nine compounds of oil were identified representing 97.1% of the oil.

The *S. etrusca* oil was characterized by five main constituents: viridiflorol (17.9%), terpinen-4-ol (14.4%), myrcene (11.8%), β -pinene (9.9%), and *cis*-muurola-4(14),5-diene (9.9%). Oxygenated monoterpenes represented 38% of the total oil, terpinen-4-ol (14.4%) being the most abundant compound. The monoterpene hydrocarbons represented 24.4% of the total oil, myrcene (11.8%) and β -pinene (9.9%) being the most abundant constituents of this fraction. Significant amounts of oxygenated sesquiterpenoid (19.4%) and sesquiterpene hydrocarbons (15.3%) were also observed.

Compared with previous reports, the composition of the oil that we analyzed greatly differed from the oils of the other studied species. The oil of *S. chamaecyparissus* L. was characterized by artemisia ketone [3–16] while the oils of *S. canescens* [17], *S. rosmarinifolia* [18], and *S. oblongifolia* [19] were characterized by santolindiacetylene, acetylenic, and dihydrofuran sesquiterpenes respectively. Some interesting similarities exist between the oils of *S. etrusca* and *S. ligustica*, the latter oil being characterized by myrcene, 1,8-cineole, and terpinen-4-ol [20]. There are fewer similarities to the oil of *S. neapolitana*; this oil was characterized by γ -muurolene and α -pinene [21], and in the oil of *S. etrusca* an important contribution is also made by muurolene derivatives.

The observed differences in the composition of the examined essential oils of *S. etrusca* and the other *Santolina* species are in accord with the difference between their morphological.characters, with the exception of *S. ligustica* where there was a substantial morphological character difference but a quite similar oil composition. Further investigations of the essential oil composition for a larger number of different populations of the same species, along with more data on the different species of the genus *Santolina*, can be helpful in chemiotaxonomy.

UDC 547.913

¹⁾ Institute of Botany, University of Urbino, Via Bramante 28, I-61029 Urbino (Italy), e-mail: tirillini@uniurb.it; 2) Dip. Farmaco-Chimico-Tossicologico, University of Sassari, Via Muroni 23, I-07100 Sassari (Italy); 3) Dip. di Scienze del Farmaco, University of Chieti-Pescara, Via dei Vestini 31, I-66013 Chieti (Italy); 4) Dip. Biologia Vegetale, University of Perugia, Borgo XX giugno (Italy). Published in Khimiya Prirodnykh Soedinenii, No. 1, pp. 38-39, January-February, 2007. Original article submitted November 29, 2005.

Compound	RRI	%	Compound	RRI	%
α-Pinene	939	0.3	β-Cedrene	1417	0.3
β -Pinene	978	9.9	Aromadendrene	1447	1.4
Myrcene	997	11.8	cis-Muurola-3,5-diene	1453	0.2
α-Terpinene	1021	0.5	cis-Muurola-4(14),5-diene	1470	9.9
<i>p</i> -Cymene	1029	1.1	γ-Gurjunene	1476	0.3
1,8-Cineole	1031	4.6	γ-Muurolene	1480	0.1
γ-Terpinene	1062	0.8	Germacrene D	1485	0.9
trans-Sabinene hydrate	1101	1.4	trans-Muurola-4(14),5-diene	1492	0.2
trans-Pinocarveol	1140	8	γ-Cadinene	1515	0.8
Pinocarvone	1164	2.7	Viridiflorol	1581	17.9
Terpinen-4-ol	1177	14.4	<i>B</i> -Oplopenone	1599	0.3
Thui-3-en-10-al	1192	3.2	Eremoligenol	1632	0.5
Myrtenol	1195	3.7	<i>epi-α</i> -Cadinol	1640	0.1
α -Ylangene	1367	0.1	<i>epi-α</i> -Muurolol	1647	0.6
β -Ylangene	1406	1.1		1017	0.0

TABLE 1. Chemical Composition of S. etrusca Essential Oil

RRI: relative retention indices calculated against *n*-alkane series on an HP-5 column.

EXPERIMENTAL

The aerial parts of *S. etrusca* growing near Corbara lake (Umbria) were collected during flowering. Voucher specimens were deposited in the Herbarium Botany Institute, University of Perugia, with the numbers SA6/05.

Fresh plant material was subjected to hydrodistillation using a Clevenger-type apparatus for 3 h, yielding 0.7% of a yellowish oil. The oil was dried over anhydrous sodium sulfate and stored in sealed vials under refrigeration prior to analysis.

Gas Chromatography. The GC analyses were carried out using a Varian 3300 instrument equipped with an HP-5 capillary column ($30 \text{ m} \times 0.25 \text{ mm}$, 0.25 µm film thickness), working with the following temperature program: 3 min at 60°C, and subsequently at 4°C/min up to 210°C (for 15 min); injector and detector temperatures, 250°C; carrier gas, helium (1 mL/min); split ratio, 1:10.

GC-MS analyses were carried out using a Hewlett Packard 5890-5972 GC-MS system operating in the EI mode at 70 eV, using two different columns, an HP InnoWax ($30 \text{ m} \times 0.25 \text{ mm}$, film thickness 0.17 µm) capillary column and an HP-5 ($30 \text{ m} \times 0.25 \text{ mm}$, film thickness 0.25 µm) capillary column. The temperature program for the HP InnoWax was 60–260°C at a rate of 4°C/min, and for the HP-5 it was 60–300°C at a rate of 4°C/min. Injector and transfer line temperatures were 220°C and 280°C, respectively. Helium was used as the carrier gas, flow rate 1 mL/min. Split ratio, 1:10.

Identification of the Components. The identification of the components was made for both columns by comparison of their retention time with respect to the *n*-alkane series (C6-C22) internal standards. The mass spectra and relative retention indices (RRI) were compared with those of commercial (NIST 98 and WILEY) and home-made library mass spectra built up from pure compounds and MS literature data [4–9].

Area percentages were obtained electronically from the GC-FID response without the use of an internal standard or correction factors.

REFERENCES

- 1. G. Abbate, and et al., *An Annotated Checklist of the Italian Vascular Flora*, ed. Conti F., Abbate G., Alessandrini A., and Blasi C., Palombi Editori, Roma, 2005, 158.
- 2. P.M. Guarrera, F. Gianluca, and M. Silvia, J. Ethnopharmacol., 96, 429 (2005).
- 3. F. Macchioni, S. Perrucci, G. Flamini, P. L. Cioni, and I. Morelli, *Phytother. Res.*, 13, 242 (1999).

- 4. R. P. Adams, *Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy*, Allured Publishing Corporation, Carol Stream, IL, USA. 2001.
- 5. N. W. Davies, *Cromatogr.*, **503**, 1 (1990).
- 6. S. R. Heller and G. W. A. Milne, *EPA/NIH mass spectral data base*, U.S. Government Printing Office, Washington, DC, 1983.
- 7. W. G. Jennings and T. Shibamoto, *Qualitative Analysis of Flavour and Fragrance Volatiles by Glass Capillary Gas Chromatography*, Academic Press, New York, 1980.
- 8. F. W. McLafferty and D. B. Staufer, *The Wiley NBS Registry of Mass Spectral Data.*, John Wiley and Sons, New York. 1989.
- 9. E. Stenhagen, S. Abrahamsson, and F. W. McLafferty, *Registry of Mass Spectral Data*, John Wiley and Sons, New York, 1974.
- 10. E. A. Aboutabl, F. J. Hammerschmidt, and A. A. Elazzouny, *Scientia Pharmaceutica*, **55**, 267 (1987).
- 11. B. Demirci, T. Ozek, and K. H. C. Baser, J. Essential Oil Res., 12, 625 (2000).
- 12. M. Derbesy, J. Touche, and A. Zola, J. Essential Oil Res., 1, 269 (1989).
- 13. S. N. Garg, D. Gupta, V. K. Mehta, and S. Kumar, J. Essential Oil Res., 13, 234 (2001).
- 14. M. Y. Haggag, M. E. El Tantawy, F. I. Ahmed, and M. M. Shams, Al-Azhar J. Pharm. Sci., 26, 23 (2000)
- 15. M. J. Perez-Alonso and A. Velasco-Negueruela, *Flavour Fragrance J.*, 7, 37 (1992).
- 16. G. Vernin, J. Essential Oil Res., 3, 49 (1991).
- 17. M. P. Utrilla, M. C. Navarro, J. Jimenez, M. P. Montilla, and A. Martin, J. Nat. Prod., 58, 1749 (1995)
- 18. J. De Pascual-T., M. S. Gonzales, M. A. De Dios, J. M. San Segundo, S. Vicente, and I. S. Bellido, *Riv. Ital. EPPOS*, **63**, 355 (1981).
- 19. J. De Pascual-T., S. Vicente, M. S. Gonzalez, and I. S. Bellido, *Phytochemistry*, 22, 2235 (1983).
- 20. G. Flamini, A. Bertoli, V. Taglioli, P.L. Cioni, I. Morelli, and G. Spinelli, J. Essential Oil Res., 11, 6 (1999).
- 21. F. Senatore and V. De Feo, *Flavour Fragrance J.*, **9**, 77 (1994).